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• Context from prior research: Importance of cost and lifetime; measuring long lifetimes

• Measuring capacity fade <1%/yr: DPivOHAQ

• Determining the predominant decomposition mechanism of anthraquinones

• Lifetime extension strategies and results 

• Cost-lifetime tradeoff: DCDHAQ
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Primary Requirements for Aqueous-Soluble Organics
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CATEGORY SPEC PROSPECTS 

Cell voltage >~ 1.0 V Several anthraquinones 

Aqueous solubility >~ 1 M e- (27 Ah/L) Several anthraquinones 

Redox kinetics Kinetic ASR << membrane ASR Most anthraquinones 

Chemical stability Fade rate <~ 10%/yr Very few AQs 

Cost Mass production cost <~$50/kAh Very few AQs 
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Negolyte Species Mass Production 
Cost ($/kAh) 

Fade Rate 
Initial  → With lifetime extension 

DPivOHAQ ~100 0.0018%/day (0.66%/yr) 

DHAQ ~ 26 5.6%/day → 0.8%/day → 0.05%/day (18%/yr) 

DCDHAQ 40-50 0.03%/day (11%/yr)     →?              →? 

Posolyte Species Mass Production 
Cost ($/kAh) 

Fade Rate 

Fe(CN)6
3-/4- 21-26 --  

 

Requirements

Candidates

Fe(CN)6



2,6-DHAQ vs. 2,6-DHAQ

Context from our Prior Research: Capacity Fade Rate

Depends Mainly on SOC, not Cycle Rate
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Marc-Antoni Goulet & M.J. Aziz, “Flow

Battery Molecular Reactant Stability

Determined by Symmetric Cell

Cycling Methods”, JES 165, A1466 (2018)

Unbalanced compositionally-symmetric

cell cycling experiment

Both sides 2,6-DHAQ, 50% SOC,

0.1 M in 1 M KOH, glove box (OCV = 0)
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0.13 W added/removed in series*

Context from our Prior Research: Potentiostatic Cycling

Eliminates Capacity Fade Artifact from ASR Drift

*represents 25% increase in membrane ASR

Marc-Antoni Goulet & M.J. Aziz, “Flow

Battery Molecular Reactant Stability

Determined by Symmetric Cell

Cycling Methods”, JES 165, A1466 (2018)
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cell cycling experiment

Both sides 2,6-DHAQ, 50% SOC,

0.1 M in 1 M KOH, glove box (OCV = 0)



Harvard Milestones, 9/10/2020—9/9/2021

• Demonstrated capacity fade rate of 0.66%/yr (0.0018%/day)
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Year 1 Milestone:

(1.1) Develop methods to reliably measure capacity fade rates as low as 2%/year

Task 1. Advanced characterization. 
In the area of flow cell performance characterization, Harvard shall support continued development 

and refinement of methods to reliably and reproducibly measure very slow fade rates in ASO RFBs. 

The tasks include precise characterization of molecular decomposition and crossover.

Task 2. Electrolyte development.
In the area of electrolyte development, Harvard shall support continuous efforts to innovate on redox-active molecules, 

counter-ions, supporting electrolytes, and membranes in order to improve the performance of ASO RFBs. The tasks include 

understanding molecular decomposition mechanisms and developing methods to extend ASO lifetime, examining different 

functionalization and their effect on capacity fade rate through molecular lifetime, studying the permeability of reactants through 

membranes and its effect on the capacity retention rate through crossover, and exploring mixtures of counter-ions in order to 

raise ASO solubility.

Year 1 Milestone:

(1.2) Demonstrate three methods of extending ASO lifetime

• Restrict max SOC

• Expose to air

• Raise pH

• Expose to oxidized posolyte

• Oxidize electrochemically



Reliable Measurements of Extremely Low Fade Rates
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Min Wu, Yan Jing, A.A. Wong, E.M. Fell, S. Jin, Z. Tang, R.G. Gordon and M.J. Aziz, “Extremely Stable 

Anthraquinone Negolytes Synthesized from Common Precursors” Chem 6, 1432 (2020)

Negative

Species:

DPivOHAQ

Positive

Species:

Fe(CN)6

(0.66%/yr)(5%/yr)

Galvanostatic (100 mA/cm2) cycling;

Potential hold at end of each half-cycle

until current < 2 mA/cm2



Predominant Anthraquinone Decomposition Mechanism

Marc-Antoni Goulet, Liuchuan Tong, et al., “Extending the Lifetime of Organic Flow Batteries via Redox State Management”, 

J. Am. Chem. Soc. 141, (2019); https://doi.org/10.1021/jacs.8b13295 8

Prototype: DHAQ at pH >~12



Decomposition Suppression. Strategy #1: 

Restricted SOC Range

Strategy #1: Restrict SOC range. 

Accessing only ~88% of theoretical capacity 

cuts anthrone formation rate.

→Cuts fade rate by 7×

Marc-Antoni Goulet, Liuchuan Tong, et al., “Extending the Lifetime of Organic Flow Batteries via Redox State Management”, 

J. Am. Chem. Soc. 141, (2019); https://doi.org/10.1021/jacs.8b13295 9

100% SOC

5.6%/day

88% SOC

0.8%/day     

5.6%/day → 0.8%/day

Prototype: DHAQ at pH >~12



Strategy #2: Regeneration by Air Exposure

Strategy #2: Aerate as anthrone forms 

to chemically oxidize back to DHAQ

→Regenerates 70% of lost capacity

lost regenerated

5.6%/day → 0.8%/day → 0.05%/day (18%/yr)

Marc-Antoni Goulet, Liuchuan Tong, et al., “Extending the Lifetime of Organic Flow Batteries via Redox State Management”, 

J. Am. Chem. Soc. 141, (2019); https://doi.org/10.1021/jacs.8b13295 10

Prototype: DHAQ at pH >~12



Strategy #3: Oxidation by Oxidized Posolyte

Strategy #3: Expose to ferricyanide

to chemically oxidize back to DHAQ
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1H NMR spectra

Anthrone starting material

Converted to DHAQ by

exposure to ferricyanide

(Undistinguishable from

pristine DHAQ)

Prototype: DHAQ at pH >~12



Strategy #4: Raise pH
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Min Wu, Yan Jing, A.A. Wong, E.M. Fell, S. Jin, Z. Tang, R.G. Gordon and M.J. Aziz, “Extremely Stable 

Anthraquinone Negolytes Synthesized from Common Precursors” Chem 6, 1432 (2020)

Le Chatelier’s Principle: 

Raising [OH-] drives Rxn to left

Negative

Species:

DPivOHAQ

Positive

Species:

Fe(CN)6

(0.66%/yr)

(5%/yr)

Prototype: DHAQ at pH >~12
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Strategy #5: Electrochemical Oxidation

Deep discharge / reverse polarization to electrochemically oxidize negolyte
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Negative

Species:

DHAQ

Positive

Species:

Fe(CN)6

6.45%/day → 0.38%/day

Yan Jing, Evan Wenbo Zhao, et al., Clare P. Grey, R.G. Gordon, M.J. Aziz, “Electrochemical Regeneration of Anthraquinones 

for Lifetime Extension in Flow Batteries”, submitted; https://doi.org/10.33774/chemrxiv-2021-x05x1

➔ Electrochemical oxidation

cuts fade rate by 20x

full cell voltage

negolyte potential vs. SHE
Thanks to mechanism deep dive



Enabling a Mechanism Deep Dive

In-situ, real-time monitoring of DHAQ-related molecular conversions

→ Collaboration with Clare Grey, Cambridge University
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Yan Jing, Evan Wenbo Zhao, et al., Clare P. Grey, R.G. Gordon, M.J. Aziz, “Electrochemical Regeneration of Anthraquinones 

for Lifetime Extension in Flow Batteries”, submitted; https://doi.org/10.33774/chemrxiv-2021-x05x1

DHAQ

Mechanism deep dive

➔ Electrochemical oxidation

cuts fade rate by 20x



Mechanism Deep Dive
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Yan Jing, Evan Wenbo Zhao, et al., Clare P. Grey, R.G. Gordon, M.J. Aziz, “Electrochemical Regeneration of Anthraquinones 

for Lifetime Extension in Flow Batteries”, submitted; https://doi.org/10.33774/chemrxiv-2021-x05x1

Mechanism deep dive

➔ Electrochemical oxidation

cuts fade rate by 20x



Mechanism Deep Dive

Yan Jing, Evan Wenbo Zhao, et al., Clare P. Grey, R.G. Gordon, M.J. Aziz, “Electrochemical Regeneration of Anthraquinones 

for Lifetime Extension in Flow Batteries”, submitted; https://doi.org/10.33774/chemrxiv-2021-x05x1 16

Mechanism deep dive

➔ Electrochemical oxidation

cuts fade rate by 20x



Trading off Lifetime vs. Mass Production Cost: DCDHAQ

M. Wu, M. Bahari, E.M. Fell, R.G. Gordon and M.J. Aziz, “High-performance anthraquinone with potentially low cost for aqueous redox 
flow batteries”, submitted 17

TBD: Effectiveness of 

lifetime extension strategies

Negative

Species:

DCDHAQ (~$40-50/kAh)

Positive

Species:

Fe(CN)6

Harvard spinout
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